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ABSTRACT 
Cyclic phase change involves the successive freezing and melting of a region driven by a boundary 
temperature that cycles above and below the solid/liquid phase change temperature. In this paper, a recently 
proposed fixed grid phase change enthalpy method is modified and applied to cyclic solid/liquid phase 
change problems. The basic approach is demonstrated on application to a one-dimensional, heat conduction 
controlled phase change. Then the method is used to investigate a cyclic phase change problem that involves 
fluid flow. The interaction of the melting and freezing with the phase change leads to some interesting 
predictions for the location and shape of the solid/liquid interface. The results also indicate that melting 
cycles are more effective than freezing cycles. 
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INTRODUCTION 

Cyclic phase change involves the successive freezing and melting of a region driven by a 
boundary temperature that cycles above and below the solid/liquid phase change temperature. 
Examples of this type of behaviour can be found in thermal storage, freeze-linings in 
pyrometallurgical processes1, and freeze/thaw cycles in soils2. The key element in a cyclic phase 
change problem is the tracking of the multiple freezing and melting fronts as they move through 
the domain of interest. Recent examples of solving cyclic phase problems include the works of 
Choi and Hsieh3 who use a moving heat source method, Hasan4 who uses deforming front tracking 
grids, Gong et al.5 who use a fixed grid enhanced heat capacity approach, and Ho and Chu6 who 
use a combination of fixed grid and front tracking methods. 

This paper focuses on the development of a fixed grid scheme for the tracking of the 
solid/liquid fronts during a cyclic phase change. This approach is based on an enthalpy 
formulation and uses the highly efficient enthalpy scheme recently proposed by Swaminathan and 
Voller7. A key feature in this work is the inclusion of cyclic phase change problems that involve 
fluid flow and convection, in addition to heat conduction. In this respect, the work is similar to the 
recent cyclic melting study reported by Ho and Chu6. In the work of Ho and Chu, although a fixed 
grid enthalpy is used to initially locate the solid/liquid fronts, subsequent movements are tracked 
on explicitly satisfying the interface heat balance (i.e., the Stefan condition). In contrast, in the 
current work, a fixed grid enthalpy method is used throughout and explicit tracking of the 
solid/liquid fronts is not required: in fact, the creation and movement of the fronts can be 
reconstructed after the fact from the predicted transient liquid fraction fields. 

In the first instance the basic mechanisms of the approach are outlined in the context of a one-
dimensional heat conduction controlled phase change problem in a semi-infinite slab with a cyclic 
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Dirichlet boundary condition applied at x = 0, T(0, t). This is followed by the application to a 
problem involving the melting and freezing of gallium in a two-dimensional cavity insulated on 
three sides with a cyclic Dirichlet boundary condition, T(0, t), applied on the right hand vertical 
wall. This cyclic problem is essentially a modification of the well known Galljura melting 
problem introduced by Gau and Viskanta8. 

A HEAT CONDUCTION PROBLEM 

The problem 
In order to present the basic approach, the one-dimensional heat conduction problem involving 

the cyclic solidification/melting of aluminum, investigated by Choi and Hsieh3, will be used as a 
test problem. Initially pure aluminum, in the solid phase, is held at its phase change temperature, 
Tm, in the region x ≥ 0. For time t ≥ 0 the surface temperature at x = 0 is cycled according to3: 

With this cycle the aluminum will first melt (t ≤ 10 s) and then freeze (10s ≤ t ≤ 20s). During the 
time interval between 10 and 20 seconds both a melting and freezing front will coexist in the 
region x ≥ 0. 

On assuming that conduction is the major heat transport mechanism the governing equation can 
be written as7: 

where α is the thermal diffusivity, L is the latent heat, c is the specific heat and 

is the local liquid fraction which ensures a correct accounting of the phase change in the solid and 
liquid regions. The boundary condition at x = 0 is given by (1) and as x → ∞, Τ → Tm. The initial 
conditions are T(x, 0) = Tm and f(x, 0) = 0. 

For consistency with the work of Choi and Hsieh3 the following thermal data for pure 
aluminum are used 

Note that the melting point of pure aluminum is Tm = 932 K3; for convenience in the current 
work, however, a temperature translation will be used such that Tm = 0. 

The discretization 
A fully implicit finite difference discretization of (2) on a grid with a fixed space step, Δx, 

results in the general equation, at node point Ρ 

where Fo = αΔt/Δx2, the superscript [ ]old denotes previous time values, the subscript [ ]P denotes 
evaluation at node Ρ and the subscripts [ ]W and [ ]E denote evaluation at the neighbouring nodes. 
At the first node adjacent to the surface x = 0 the discrete equation takes the form 
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where the nodal temperature T0 will take the prescribed values given by the cyclic melting 
freezing boundary condition, (1). On solution of the non-linear system given by (5) the location 
and movement of the cyclic phase change fronts can be tracked from the predicted nodal liquid 
fraction field, f. It is important to recognize that the location of the phase fronts is not required 
during the numerical solution. As such, if desired, the phase front locations can be obtained after 
the solution from the stored transient liquid fraction fields. 

The numerical solution 
In solving (5) an efficient version of the predictor corrector, fixed grid, implicit method 

proposed by Swaminathan and Voller7 will be used. For the given problem (with phase change 
temperature Tm = 0) this can be implemented in the following manner: 

(1) In a given time step, (5) is written in iterative form 

where the superscript [ ]m indicates the iterative level. Equation (7) is linear in 7m+1 since 
the liquid fraction/and the coefficient aP are only defined at the known level m. The system 
of equations can be solved using a tri-diagonal matrix algorithm (TDMA) solver. 

(2) The iteration in (7) is initiated on setting f0 =fold. 
(3) A key feature in the solution is the evaluation of the coefficient aP. Given the mth level 

liquid fraction field this coefficient is calculated as 

(4) In order to illustrate the role of the aP coefficient consider the case where the control 
volume associated with the Pth node is undergoing the phase change. In this case 0 <fmP < 1 
and (8) will set αmP to a large value. This forces the solution of (7) to return a value of Tm+1P 
very close to 0 which is the correct nodal temperature value. Further, since the predicted 
phase change nodal temperatures are correct, the predicted temperatures at the non-phase 
change nodes (i. e., nodes at which [foldi-fmi] = 0) will also be correct. The updated liquid 
fraction field then follows on rearrangement of equation (5), i.e.: 

where it is assumed that TP = 0. 
(5) In practice, for computational convenience, the liquid fraction update, (9), is applied at 

every node (regardless of its phase change status). To avoid un-physical results from this 
step the following under/overshoot correction is applied: 

Note that use of this correction will also take account of cases where a control volume 
initiates or completes its phase change during a time step. 

(6) In cases where the phase change status of a control volume remains unchanged in a time 
step, the above solution procedure will require only one iterative sweep. If a control volume 
changes its status, a common occurrence in a cyclic problem, additional iterations are 
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required to obtain consistency between the nodal temperature and liquid fraction fields. In 
the one-dimensional conduction problems reported here, at most three iterative sweeps 
were required to reach a consistent solution. 

Results 
In solving a cyclic phase change problem the above numerical scheme is implemented directly 

with the cyclic boundary condition. As previously noted the relative positions of the melt and 
solid phase fronts are not required as part of the solution. The appropriate movement of these 
fronts is reconstructed from the liquid fraction field. This can be achieved in one of two ways. 

(1) After the complete solution, a post processing operation on the stored transient nodal 
liquid fraction fields can be carried out. 

(2) Alternatively, to save storage, the predicted nodal liquid fraction field can be 
"interrogated" after each time step. 

In this work the second of these two approaches will be employed. In the first instance two 
additional, "phase maker", nodal field variables,ffree and fmelt (initialized to zero), are introduced. 
Following each time step the phase maker variables, at each node Ρ = i . . . n, are updated as 

On performing a sequential search through the nodes (P = i . . . n), the nodal location, of the 
freezing front nearest the heating/cooling surface (x = 0), Ifree, is identified as the first node I 
where ffreeI > 0 and the nodal location of the melt front nearest χ = 0, Imelt is identified as the first 
node I where fmeltI-1-1 and fmeltI < 1. From these nodal locations, the positions of the freeze and 
melt fronts are calculated as 

respectively, where, in keeping with the current problem, it is assumed that the melt front 
proceeds the freeze front. In this way, with appropriate storing of the front positions, the 
movements of the solidification and melt fronts over a number of cycles can be obtained. 

The predicted movements of the melting and freezing fronts, over one cycle, using 20 space steps 
of δx = 0.0025m, a time step of δt = 0.05s and the thermal data in Eq. (4) are shown in Figure 1. 
These predictions are in very close agreement with the results presented by Choi and Hsieh3 

(Figure 5) and Ho and Chu6 (Figure 2); in particular the lagging of the freezing front due to the 
residual super heat remaining after the melting step3 is evident. The CPU time (Fortran 77 running 
on an Intel 90 MHz Pentium processor) for the calculation in Figure 1 is less than 1 second. 

CYCLIC PHASE CHANGE WITH FLUID FLOW 

The cyclic phase change algorithm, developed above, is applied to the melting and freezing of a 
Gallium system, based on the melting only set-up originally investigated by Gau and Viskanta8. 
Figure 2 shows a schematic of the computational domain. The cavity initially contains solid 
gallium at the phase change temperature (set at Tm = 0). Three sides of the cavity are insulated. At 
time t = 0 the temperature along the left hand wall begins to cycle according to 

this drives successive melting and freezing of the material in the cavity. 
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Following Lacroix and Voller9 and Brent et al.10 the governing equations are, assuming 
constant thermal-physical properties and invoking the Boussinesq buoyancy treatment, 

Continuity: 

Momentum: 
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Energy: 

where, in the current problem, the kinematic viscosity v = 2.97 10-7 [m/s], the diffusivity α = 
1.4145 10-5 [m/s], the ratio of latent heat to specific heat L/c = 195.71 [K], the acceleration due to 
gravity g = 9.81 [m/s2], and the thermal coefficient of expansion β = 1.3054 10-4 [1/K]. 

The governing equations are solved on a fixed computational grid (40 x 20 square control 
volumes) and a time step of 10s. The iterative solution approach is based on the work of Brent et 
al.10 with the incorporation of the recent phase change treatment proposed by Swaminathan and 
Voller7. The key steps in this approach are: 

(1) A local liquid fraction term, f, that tracks the phase fronts through the fixed computational 
mesh. The iterative calculation of this variable is identical to the approach used in the 
conduction problem above. 

(2) A porosity source term in the momentum equations, e.g. 

This term forces the momentum equations to mimic a Darcy equation in the phase change 
region. A term that "switches off the velocity as the local liquid fraction goes to zero. The 
constant Ko is a morphological constant used to represent the porosity in the phase change 
region, in the current isothermal phase change case a value of Ko = 105 is used. (Note in 
more general phase change cases, which involve a mushy region, it is common to use the 
Carman-Kozeny equation in place of (19)). 

(3) The application of the segregated iterative based SIMPLE algorithm11 to solve for pressure 
and velocity. 

(4) A line by line TDMA solver11. 
In carrying out the above calculations convergence, within an iteration, is declared when both the 
maximum mass balance in a computational volume falls below 0.001% of the total mass in the 
cavity and the heat balance falls below 0.05%. In the current problem, over one cycle of freezing 
and melting, an average of 28 iterations per time step are required. The position of the phase 
change fronts can be established, at each time step, on simply interpolating for the position of the 
0.5 liquid fraction contours. In the problem investigated, this approach was sufficient to pick up 
the position of the fronts even when multiple fronts were present in the cavity. 

Two comments are made on the solution approach: 
(1) No experimental verification for the cyclic case is presented, it is noted, however, that in 

the case of a constant melting wall temperature the proposed fixed grid approach gives 
predictions in close agreement with experiments10 and alternative transformed grid 
schemes9. 

(2) Although a finite difference control volume method has been employed there is every 
reason to expect that the proposed cyclic solution approach could be applied on a finite 
element grid. 

Figure 3 shows the predicted position of the solid/liquid interface and the flow field (stream lines) 
at intervals of 300 seconds up to t = 48,000 seconds; these "snap shots" reveal the state of the 
cavity at the end of each melting and freezing cycle. In this figure solid stream lines indicate flow 
in a clockwise direction and dashed streamlines indicate flow in an anti-clockwise direction (note 
the stream function values are in 10-6m2/s). Solution on an Intel 90MHz Pentium processor 
(running Fortran 77) requires in the order of 2 CPU hours. 

With reference to Figure 3 the following commentary is made on the evolution of cyclic 
melting and freezing in the presence of fluid flow: 
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• In the first melting cycle (t = 0s ... 300s) the predictions are similar to predictions obtained 
in the melting only studies (e.g. Brent et al.). In particular the enhancement of melting, in 
the upper part of the cavity, due to natural convection is evident. 

• During the subsequent solidification cycle (t = 300s ... 600s) due to the rapid dissipation of 
temperature gradients in the melt the movement of the solidification is not modified by the 
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fluid flow. The reduction in the effectiveness of the heat transfer is noted on observing that 
a liquid pool still remains at the end of the freezing (t = 600s). 

• The above behaviour continues over the next few cycles with an increase in (i) the liquid 
remaining at the end of solidification and (ii) the stream function intensities. At later stages 
(t ≥ 2100s) the residual flow field in the liquid pool is, although weakened, maintained 
throughout the freezing cycle. Also note that during the freezing cycle the shape of the liquid 
pool near the right hand side boundary does not alter in shape. This indicates that the solid 
in this region remains close to the phase change temperature (Tm = 0). 

• The first modification is that the behaviour occurs during the melting cycle from t = 4200s 
... 4500s. In this cycle the melting breaks through the solid on the right hand wall. The result 
is a heating of the right hand wall which leads to a drop of the horizonal temperature 
gradient in the liquid pool and a decrease in the flow intensity. 

• Over the subsequent freezing cycle (t = 4200s ... 4800s), unlike pervious freezing cycles, 
due to the heated right hand wall the temperature gradients in the liquid pool are not 
dissipated. The result is a weak but well defined anti-clockwise natural convection flow cell 
in the left hand part of the liquid pool. 

CONCLUSIONS 

The central contribution of this paper has been to demonstrate that a basic, but efficient, fixed grid 
enthalpy scheme7 can be successfully applied in the solution of problems that involve multiple 
moving phase change fronts. The only requirement is an appropriate interpretation of the 
predicted nodal liquid fraction fields. There is no need to explicitly track the movement of the 
fronts; indeed the movements and positions can be recovered after the fact from the stored liquid 
fraction field. 

Demonstration on a heat conduction controlled cyclic phase change problem produced results, 
requiring insignificant computing resources, in very close agreement with other researchers3,6. 
Application to problems involving fluid flow in the melt indicated that, under a cyclic boundary 
condition, the convective enhancement of the heat transfer melting cycles were much more 
effective than freezing cycles. 

The methods and finding from this study will underpin ongoing studies directed at the 
investigation of "freeze linings" in high temperature processes, e.g., the cryolite ledge in a Hall 
aluminum reduction Cell. 
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